Genetic analysis of high-risk e6 in episomal maintenance of human papillomavirus genomes in primary human keratinocytes.
نویسندگان
چکیده
Papillomaviruses possess small DNA genomes that encode five early (E) proteins. Transient DNA replication requires activities of the E1 and E2 proteins and a DNA segment containing their binding sites. The E6 and E7 proteins of cancer-associated human papillomavirus (HPV) transform cells in culture. Recent reports have shown that E6 and E7 are necessary for episomal maintenance of HPV in primary keratinocytes. The functions of E6 necessary for viral replication have not been determined, and to address this question we used a recently developed transfection system based on HPV31. To utilize a series of HPV16 E6 mutations, HPV31 E6 was replaced by its HPV16 counterpart. This chimeric genome was competent for both transient and stable replication in keratinocytes. Four HPV16 E6 mutations that do not stimulate p53 degradation were unable to support stable viral replication, suggesting this activity may be necessary for episomal maintenance. E7 has also been shown to be essential for episomal maintenance of the HPV31 genome. A point mutation in the Rb binding motif of HPV E7 has been reported to render HPV31 unable to stably replicate. Interestingly, HPV31 genomes harboring two of the three p53 degradation-defective E6 mutations combined with this E7 mutation were maintained as replicating episomes. These findings imply that the balance between E6 and E7 functions in infected cells is critical for episomal maintenance of high-risk HPV genomes. This model will be useful to dissect the activities of E6 and E7 necessary for viral DNA replication.
منابع مشابه
Roles of the E6 and E7 proteins in the life cycle of low-risk human papillomavirus type 11.
Many important functions have been attributed to the high-risk human papillomavirus (HPV) E6 and E7 proteins, including binding and degradation of p53 as well as interacting with Rb proteins. In contrast, the physiological roles of the low-risk E6 and E7 proteins remain unclear. Previous studies demonstrated that the high-risk E6 and E7 proteins also play roles in the productive life cycle by f...
متن کاملA new cell culture model to genetically dissect the complete human papillomavirus life cycle
Herein, we describe a novel infection model that achieves highly efficient infection of primary keratinocytes with human papillomavirus type 16 (HPV16). This cell culture model does not depend on immortalization and is amenable to extensive genetic analyses. In monolayer cell culture, the early but not late promoter was active and yielded a spliced viral transcript pattern similar to HPV16-immo...
متن کاملLeptomycin B induces apoptosis in cells containing the whole HPV 16 genome.
Cervical cancer is a major cause of death in women worldwide and is strongly associated with human papillomavirus (HPV) infection. Integration of HPV is thought to be a key step in malignant progression, and is associated with loss of regulation of the viral E6 and E7 oncogenes. Leptomycin B (LMB), a nuclear export inhibitor, has previously been shown to induce apoptosis in primary keratinocyte...
متن کاملComparative analysis of 19 genital human papillomavirus types with regard to p53 degradation, immortalization, phylogeny, and epidemiologic risk classification.
We have analyzed E6 proteins of 19 papillomaviruses able to infect genital tissue with regard to their ability to degrade p53 and the thus far unknown immortalization potential of the genomes of human papillomaviruses (HPV) 53, 56, 58, 61, 66, and 82 in primary human keratinocytes. E6 proteins of HPV types 16, 18, 33, 35, 39, 45, 51, 52, 56, 58, and 66, defined as high-risk types, were able to ...
متن کاملPapillomavirus E6 PDZ interactions can be replaced by repression of p53 to promote episomal human papillomavirus genome maintenance.
Cancer-associated human papillomaviruses (HPVs) express E6 oncoproteins that target the degradation of p53 and have a carboxy-terminal PDZ ligand that is required for stable episomal maintenance of the HPV genome. We find that the E6 PDZ ligand can be deleted and the HPV genome stably maintained if cellular p53 is inactivated. This indicates that the E6-PDZ interaction promotes HPV genome maint...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 76 22 شماره
صفحات -
تاریخ انتشار 2002